

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

THE Ames Laboratory

Creating Materials & Energy Solutions

Prospects for Improving alnico Matthew J. Kramer 2013 TMS Spring Meeting

This work was supported by the Department of Energy-Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-07CH11358, Ames Laboratory (USDOE), and by Oak Ridge National Laboratory's ShaRE User Facility

Acknowledgements

- Qingfeng 'Sam' Xing and Lin Zhou

 TEM
- Ping Lu, Sandia National Laboratory
 - Aberration corrected STEM/EDS mapping
- Kevin Dennis and Haley Dillon
 - Sample preparation
- Fran Laabs
 - OIM
- Warren Straszheim
 - SEM/ EPMA
- Steve Constantinides, Arnold Magnetic Technologies
 - Supplied samples and invaluable insights
- Mike Miller, Oak Ridge National Laboratory
 - 3D atom probe
- Iver Anderson and Bill McCallum

Energy Density

 RE permanent magnets clearly best all older technologies

– BUT!

(BH)_{max}, MGOe

3

Variety of Synthesis Routes

- Casting or Sintering
- Isotropic alloys containing up to 12% Co are called Alnico
- Orientation of the spinodal can be biased with the application of a magnetic field
 Alcomax - 20-25% Co with H_{ci} 45-60 kA/m
- Directional growth using heated molds or Bridgemann methods

– Arkomax 800 and Alnico 9

Alloying Challenges

- Various other transition metals are added to improve various properties such as H_{ci}
 - Ti, Cu and Nb are most common
 - Empirically developed in the 50's and 60's
 - Why are some additions more effective?
- Control AI loss during processing
- Improve castability without degrading magnetic properties.

Uncertain how to improve the coercivity (H_{ci}) while maintaining Remanent Flux Density (B_r)!

Microstructure

- Fe-Co rich precipitates in Ni-Al rich matrix
 - Decomposes along {001} planes
 - Proceeds in the <001> directions
- Preferential growth of precipitates parallel to a magnetic field
 - Spinodal decomposition range lies below $T_{(c)}$, allowing alignment
- Aligned precipitates enhance coercivity through shape anisotropy

Longitudinal

Transverse

TEM DF images of Arnold Alnico 5-7

Isotropic vs Grain Aligned

- Random grain orientation results in low magnetization
 - Projection of the applied field to the prismatic directions
- Grain alignment increases
 B_r.
 - Need defects to pin flux
 - Columnar vs equiaxed

Volume Fraction

- Role of Ni-Al rich phase
 - Maintains shape anisotropy by separating needles
 - Average spacing ~7.4nm (grain aligned 5-7)
- Volume fraction of Fe-Co rich particles
 - 62% for 5-7
- Theoretical maximum in energy product occurs at f=2/3
 - Assumes a pure NiAl matrix and pure FeCo rods

Skomski, R. et al.(2010). Permanent magnetism of dense-packed nanestructures. *Journal of Applied Physics*, *107*(9)

STEM micrograph of columnar Arnold Alnico 5-7 looking along the growth axis.

Alnico samples investigated

- Extensive characterization of alnico samples from Arnold
 - High Fe, directionally cast 5-7
 - High Co, isotropic 8
 - Performed quenching experiments on samples from Arnold
 - Directionally grown 9
- Role chemistry and nanostructure on B_r and H_{ci}.

	composition in wt. %							Br	Hci
sample	Fe	Со	Ni	AI	Cu	Nb	Ti	(kG)	(Oe)
5-7	49.9	24.3	14.0	8.2	2.3	1.0	0.0	13.5	740
8	30.0	40.1	13.0	7.1	3.0	0.0	6.5	8.2	1860
9	35.5	35.4	13.1	7.0	3.2	0.5	5.0	10.6	1500

5-7 in more detail

- What are the structures of the two phases?
- How coherent are the interfaces?
- Partitioning of the elements?
- Where does the domain wall pinning occur?

HRTEM VS STEM Imaging

- HRTEM
 - Planer illumination
 - Multi-beam scattering
 - Image contrast
 - Thickness
 - defocus
- Z-contrast
 - Scans a fine probe
 - Electrons are scattered to an annular detector
 - Strength of the scattering ~ Z

From Eiji Abe and An Pang Tsai

Structure and Chemistry

 Only TEM/STEM provides both the sensitivity and spatial resolution Incident

converged

beam

Probe corrected STEM images taken at Sandia with a FEI Titian

Interface

 EDS mapping of the Fe-Co rich regions (red) and the Al-Ni rich regions (green)

HR STEM
 imaging of the
 coherent interface

AINi

B2

FeCo

bcc

732 HAADF MAG: 320000 x HV: 200.0 kV WD: -1.0 mm

Atom Probe Tomography

- Greater spatial resolution and lower limit sensitivity
 - Define a small volume and count atoms along the axis orthogonal to the interface
 - Confirmed STEM/EDS

Chemical distribution along a volume within the larger data set

Precise Atomic Distributions

- What is the composition of the Fe-Co and AI-Ni rich regions?
- How sharp is the interface
 - Define unique surfaces $\frac{1}{20}$ and count atoms in an $\frac{1}{20}$ area at a fixed distance 20 from that surface
 - Higher counts
 - Interface maybe less sharp

UNIVERSIT

OLOGIES

Summary 5-7

- Well defined 'prismatic blocks' of well faceted –(001)
 bcc (Fe,Co) ~ 40-60 nm in diameter but of uncertain length (> 100 nm).
- Thin, ~ 5 nm, B2 (Ni,AI,Co,Fe), with minor Cu
- Fully coherent interfaces
- Volume fraction bcc:B2 ~ 61:39

Composition of the Spinodal Phases

	bo	CC	B2		
	at.%	(error)	at.%	(error)	
Fe	68.1	0.78	13.4	0.46	
Со	24.2	0.72	17.4	0.51	
Ni	2.6	0.27	33.0	0.63	
ΑΙ	3.6	0.31	30.6	0.62	
Cu	0.5	0.11	4.2	0.27	
Nb	0.1	0.06	0.5	0.09	
Si	0.5	0.11	0.3	0.08	
Ga	0.4	0.11	0.6	0.10	

Effect of Changing Chemistry

 Add a bit more Co, Cu and Ti

> $- B_r \downarrow$ $- H_{ci} \uparrow$

 Doubles energy density

ARNOLD

MAGNETIC TECHNOLOGIES

- Cast alloy
 - Random grain orientation
 - But heat treated in a magnetic field
- Higher Co and Ti

. RD

TD

(Highlighted Points)/(Total Number of Points) = 0.000 (Highlighted Points)/(Number of Good Points) = 0.000 (Highlighted Points)/(Number of Partition Points) = 0.000

Gray Scale Map Type:<none>

Color Coded Map Type: Inverse Pole Figure (001) Aluminum Cobalt Nickel_440922

Boundaries: Rotation Angle							
	Min	Мах	Fraction	Number	Length		
—	15°	180°	0.929	33268	13.45 cm		

*For statistics - any point pair with misorientation exceeding 2° is considered a boundary total number = 35817, total length = 14.48 cm)

	composition in wt. %							Br	Hci
sample	Fe	Со	Ni	AI	Cu	Nb	Ti	(kG)	(Oe)
5-7	49.9	24.3	14.0	8.2	2.3	1.0	0.0	13.5	740
8	30.0	40.1	13.0	7.1	3.0	0.0	6.5	8.2	1860
9	35.5	35.4	13.1	7.0	3.2	0.5	5.0	10.6	1500

EBSD pole figure showing a grain well aligned to the applied field during cooling

 Significant change in chemistry and morphology for alnico 8 (and 9) 022 AlNi CoFe Cu 40nm

001

RD

STEM HAADF image showing Fe-Co (bright regions) interspersed with intermetallic

Electron diffraction shows that the intermetallic phase is no longer the B2 but is an ordered fcc (DO_3 or $L1_2$).

TEM and APT both show clear segregation of the Cu to the regions in-between the bcc and $L1_2$.

- Summary
 - 'NiAl' L2₁ appears more continuous
 - Cu precipitates at boundary between the 'AINi'
 - FeCo more blocky rather than prismatic?
 - Need to get a clearer picture of the 3D morphology
 - bcc : L2₁ as low as
 29:71

	bo	C	L2 ₁		
	at.%	(error)	at.%	(error)	
Fe	52.3	0.60	18.8	0.79	
Со	37.6	0.58	32.3	0.95	
Ni	3.2	0.21	15.8	0.74	
ΑΙ	4.3	0.24	14.6	0.71	
Cu	0.7	0.10	1.1	0.21	
Ti	1.4	0.14	16.8	0.76	
Si	0.2	0.05	0.4	0.12	
Ga	0.3	0.07	0.3	0.11	

Most data sets show a high Fe and Co in the $L2_1$ phase.

- Cast alloy
 - Aligned grain orientation
 - and heat treated in a magnetic field
- Less Co and Ti than 8

	composition in wt. %							Br	Hci
sample	Fe	Со	Ni	AI	Cu	Nb	Ti	(kG)	(Oe)
5-7	49.9	24.3	14.0	8.2	2.3	1.0	0.0	13.5	740
8	30.0	40.1	13.0	7.1	3.0	0.0	6.5	8.2	1860
9	35.5	35.4	13.1	7.0	3.2	0.5	5.0	10.6	1500

- Morphology very similar to the alnico 8
 - $-L2_1$ as the matrix phase
 - Cu between bcc and L2₁

Dark field image confirming the L2₁ structure of the intermetallic

HRTEM showing the coherent interfaces and the different ordering of the intermetallic

220

 STEM EDS mapping reveals some subtleties in the Al-Ni-Ti distributions

ECHNOLOGIES

HAADF STEM image taken under [100] zone axis.

Composition Profiles Al and Ni enrichment at the GB alnico 9

High Fe and Co content to matrix

- Summary
 - Very high aspect ratio
 - Ends more tappered
 - 3DAP though shows similar chemical distributions
 - bcc:L2₁ 53:47
 - Higher ratio may explain the slightly higher B_r

	bo	cc	L2 ₁		
	at.%	(error)	at.%	(error)	
Fe	54.4	1.26	10.8	0.65	
Со	36.5	1.22	28.7	0.94	
Ni	3.5	0.46	20.6	0.84	
ΑΙ	4.0	0.49	24.4	0.89	
Cu	0.4	0.16	1.5	0.25	
Ti	0.5	0.18	12.9	0.70	
Cr	0.1	0.08	0.9	0.19	
0	0.3	0.13	0.1	0.07	
Ν	0.0	0.03	0.1	0.04	
Ga	0.2	0.10	0.1	0.06	

Spinodal Phases

		Fe-Co		'Al-Ni'				
	bcc	phase (a	t. %)	intermet	intermetallic phase (at. %)			
	5-7	8	9	5-7 B2	8 – L2 ₁	9 - L2 ₁		
Fe	68.1	52.3	54.4	13.4	18.8	10.8		
Со	24.2	37.6	36.5	17.4	32.3	28.7		
Ni	2.6	3.2	3.5	33.0	15.8	20.6		
ΑΙ	3.6	4.3	4.0	30.6	14.6	24.4		
Cu	0.5	0.7	0.4	4.2	1.1	1.5		
Nb	0.1			0.5				
Ті		1.4	0.5	0.3	16.8	12.9		
Cr			0.1			0.9		
Si	0.5	0.2			0.4			

Estimate Limits

- $B_r \approx f^*M_s$
- $Hc_i \approx (1-f)(N_b-N_a)4\pi^*M_s$
- $Hc_i \approx 1/2(1-f)B_r + H_a$
- $$\begin{split} &Hc_{i} \approx (1\text{-}f)(N_{b}\text{-}N_{a})4\pi^{*}M_{s} \\ &Hc_{i} \approx 1/2(1\text{-}f)B_{r} + H_{a} \\ &BH_{max} \text{ occurs where } f \approx 2/3 \\ &BH_{max} < \mu_{o}M_{s}^{2}/12 \approx 1/2 \ Hc_{i}B_{r}^{\text{H}} \end{split}$$

data taken from Bozorth, PR 79, 887 (1950

Luborsky, F. E., et. al., J Appl Phys 28 (1957), 344. Skomski, R., et. al. J Appl Phys 107, Doi 10.1063 Skomski, R., et. al. IEEE Trans. Magn, in press

Theoretical Limits

		Alnico 5-7	Alnico 8	Alnico 9
aspect ra	~ 5:1	~ 10:1	> 10:1	
fraction bcc p	hase (f)	0.62	0.4	0.53
Fe:Co in bcc	phase	0.74	0.58	0.60
mole % Fe+C	o in bcc	0.92	0.90	0.91
~M _s (KG) for bcc ba	sed on Fe:Co	23.8	23.9	23.9
Fe:Co in inter	0.44	0.37	0.27	
mole % Fe+C	0.31	0.51	0.40	
B (KG)	measured	13.5	8.2	10.6
$D_r(10)$	calculated	13.6	8.6	11.5
	measured	740	1860	1500
nc _i (Oe)	calculated	3105	4365	3715
	measured	7.5	5.3	9.0
	calculated	21.1	18.8	21.4

Summary

- The 5-7 has both a different nanoscaling of the spinodal and the non-magnetic phase which forms with the bcc phase.
 - The bcc in 5-7 has higher Fe:Co, consistent with the bulk
 - Has a higher phase fraction of the bcc
 - The Cu is uniform in the B2 phase
 - Uniform long prismatic bcc grains aligned to the applied field
 - {001} type facets coherent with the B2

Summary

- The 8 and 9 alloys have faceted bcc grains separated from the L2₁ by Cu.
- Is L2₁ is too high in elements with moments?
 - Also see small FeCo nodules in the $L2_1$ phase.
- Is the high Co and Fe needed to form the L2₁ phase?
- Pathway to finer FeCo phase is unclear
 - Simply quenching faster won't work.
 - Need to develop the isolated grains
 - What role does Cu and Ti play?

Summary

 The 5-7 with low Co and no Ti has higher proportion of the bcc and narrower separation of the non-magnetic phase.

– Consistent with the higher Br and lower H_{ci}

- The 8 and 9 have higher Co and Cu and added Ti resulting in less bcc but with larger separation.
 - The non-magnetic phase is L2₁ with {110} faceting with bcc
 - Consistent with the higher H_{ci} and lower Br

Challenges to improving alnico

- Alnico 5-7 has acceptable B_r
 - How to improve H_{ci} ?
 - Is the spacing too small
- Alnico 8 and 9 have acceptable H_{ci}
 - Is the high Co needed to form the coherent $L2_1$?
 - At least reduce cost!
 - How to increase fraction of the bcc?
- Hinges on knowing what controls coercivity.

Observations

- Cu appears as a rod to sheet like precipitates only a few nm in thickness between the 'AI-Ni' and 'Fe-Co' phases in the alnico 8 and 9 and is uniform in the 'AI-Ni' in the 5-7.
- Ti partitions to the 'Al-Ni' phase.
- The Fe:Co ratio is considerably higher in the 'Fe-Co' phase in the 5-7.
- Volume fraction of the 'Fe-Co' lower in the alnico 8 and 9.

Summary Continued

- The 8 has the highest Co studied
 - Responsible for the lower B_r?
 - Note Fe:Co is ~ 58:42
 - Volume fraction bcc ~ 50%
 - Responsible for forming $L2_1$
 - Change in bcc morphology
 - Role in H_{ci}?
- Where is the pinning?

Data is consistent with AlNi₂Ti SG225, a=5.74 (~2x bcc Fe) Al 0,0,0 Ni $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$ Ti $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

1250°C as quenched	800°C 5 min annealed	800°C 10 min annealed
	D HERE	
이 아이		
	5 <u>0n</u> m	

size of Al- 10-20nm long, ~several Ni rich nanometer wide phase.

size 30-50nm long, ~12nm wide

size ~20nm along diagonal direction of those patches

All images are taken along [110] zone axis at the same magnification. The bright region is the FeCo-rich phase, while the dark region is the AlNi-rich phase. The AlNi-rich phase showed Do3 ordering. The as quenched sample has similar morphology as the 5min annealed one, but with smaller grain size. Their phase boundaries are bounded by {110} and {100} planes. However, the 10min annealed one shows a distinctive change in morphology. Its phase boundaries are {110,001, of {110} planes. How STATE WAGNETIC TECHNOLOGIES

Alnico 8, 1250°C quenched

- Images waiting for MM but consistent w/ TEM.
 - Unable to suppress spinodal
- BUT only 1 interface over 87M counts.
- ~ 1 nm sized Cu clusters

90s hold at 850°C

39

10 min hold at 850°C

Optimal alnico 8

- The spatial distribution of the spinodal is coarser, but in many respects the general elemental distributions don't change much.
 - But are differences in the details
- The other TM are more uniform in concentration in the optimal alloy (except Co) while Ni, Al and Ti

distance (nm)

IOWA STAT

UNIVERSI

But the finer spinodal is interconnected!

NOLOGIES

41